Techniques from combinatorial approximation algorithms yield efficient algorithms for random2k-SAT
نویسندگان
چکیده
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملApproximation Algorithms for MAX SAT
Maximum Satisfiability Problem (MAX SAT) is one of the most natural optimization problems. It is known to be NP-hard. Hence, approximation algorithms have been considered. The aim of this survey is to show recent developments of approximation algorithms for MAX SAT. We will confine ourselves to approximation algorithms with theoretical performance guarantees. For other approximation algorithms ...
متن کاملApproximation Algorithms for Combinatorial Optimization
In combinatorial optimization, the most important challenges are presented by problems belonging to the class NP-hard. For such problems no algorithm is known that can solve all instances in polynomial time. It is also strongly believed that no polynomial algorithm is capable of doing this. Although it is very difficult to solve exactly any of the NP-hard problems, some of them are amenable to ...
متن کاملOn Approximation Algorithms for Hierarchical MAX-SAT
We prove upper and lower bounds on performance guarantees of approximation algorithms for the Hierarchical MAX-SAT (H-MAX-SAT) problem. This problem is representative of a broad class of PSPACE-hard problems involving graphs, Boolean formulas and other structures that are de ned succinctly. Our rst result is that for some constant < 1, it is PSPACE-hard to approximate the function H-MAX-SAT to ...
متن کاملNew 3⁄4 - Approximation Algorithms for MAX SAT
Recently, Yannakakis presented the rst 3 4-approximation algorithm for the Maximum Satissability Problem (MAX SAT). His algorithm makes non-trivial use of solutions to maximum ow problems. We present new, simple 3 4-approximationalgorithmsthat apply the probabilistic method/randomized rounding to the solution to a linear programming relaxation of MAX SAT. We show that although standard randomiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2004
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2004.07.017